Developing Volume-Delay-Functions Used in Transport Studies in Metro Manila

Gesalem, Jiaan Regis G. Fillone, Alexis M.

Four-Stage Transportation Model (Paulley, 2001)

^{8TH} ATRANS SYMPOSIUM on Transportation for a Better Life: Harnessing Finance for Safety and Equity in AEC, 21 August 2015, Bangkok, Thailand

Study Area

by: https://maps.google.com/

Quezon Avenue

Roxas Boulevard

Katipunan Avenue

Number of Lanes: 5 Length: 7.3 km Design Speed: 80 kph Capacity: 8250 pcu/hr

EDSA (North Bound)

EDSA (South Bound)

^{8TH} ATRANS SYMPOSIUM on Transportation for a Better Life: Harnessing Finance for Safety and Equity in AEC, 21 August 2015, Bangkok, Thailand

Speed-Flow-Density Relationship q = u k

Basic Volume Delay Function

Comparison of Five Different Links

Travel Time VS Vehicular Flow

Public Transportation Volume

Jeepney Volume

Bus Volume

Shared Taxi (FX) Volume

(He & Zhao, 2013)

$$\boldsymbol{t} = \alpha_0 + \alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2 + \alpha_3 \boldsymbol{x}_3 + \alpha_4 \boldsymbol{x}_4 + \dots + \alpha_n \left(\frac{\boldsymbol{\varrho}}{\boldsymbol{C}}\right)^{\beta}$$

$$= t_0 + \alpha_n \left(\frac{Q}{C}\right)^{\beta}$$
$$= t_0 \left[1 + \alpha \left(\frac{Q}{C}\right)^{\beta}\right]$$

Proposed Models

EDSA North Bound

$$T = T_{o} \left(1 + 2.27 \times 10^{-9} \left(\frac{v}{c} \right)^{01.55} \right)$$

EDSA South Bound

$$T = T_{o} \left(1 + 7.69 \times 10^{-5} \left(\frac{v}{c} \right)^{0.99} \right)$$

Quezon Avenue

$$T = T_{o} \left(1 + 5.50 \times 10^{-3} \left(\frac{v}{c} \right)^{0.95} \right)$$

Katipunan Avenue

$$T = T_{o} \left(1 + 6.05 \times 10^{-7} \left(\frac{v}{c} \right)^{1.75} \right)$$

Roxas Boulevard

$$T = T_{o} \left(1 + 52.05 \left(\frac{v}{c} \right)^{0.43} \right)$$

Conclusion

- The study produced alternative volume delay functions for the Philippine setting.
- Public transportation on a road segment has a significant effect on travel time.
- Presence of public transportations may vary for each road, thus volume delay functions can be grouped.

Recommendation

- Functions are still road dependent
 - Prevent the need to calibrate functions
- Obtain real time data using advance technologies
 - Categorize road sections
- Combine other travel time factors into the volume delay function.

8TH ATRANS SYMPOSIUM on Transportation for a Better Life: Harnessing Finance for Safety and Equity in AEC, 21 August 2015, Bangkok, Thailand

THANK YOU!